TUM – TUM – Menü

Prof. Dr. Raymond Hemmecke

Recent e-prints

  • Integer Programming
    • E. Finhold, and R. Hemmecke. Lower bounds on the Graver complexity of M-fold matrices. arXiv:1311.3853 , 2013.
    • S. Borgwardt, E. Finhold, and R. Hemmecke. On the Graver diameter of dual transportation polyhedra. arXiv:1405.3184 , 2014.
  • Algebraic Statistics
    • R. Hemmecke and T. Windisch. On the Connectivity of Fiber Graphs. arXiv:1405.0812 , 2014.

Recent Papers

  • Integer Programming
    • J.A. De Loera, R. Hemmecke, S. Onn, and R. Weismantel. N-fold integer programming. Discrete Optimization 5:2, May 2008, Pages 231–241. Selected as one of "10 excellent papers that exemplify the breadth and quality of the work that has been published in this journal  over the last decade".
    • Survey: R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel. Nonlinear integer programming. Invited book chapter in: 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), Springer-Verlag, 2009, ISBN 3540682740.
    • R. Hemmecke, M. Köppe, and R. Weismantel. A polynomial-time algorithm for optimizing over N-fold 4-block decomposable integer programs.In: Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 6080 (2010), 219-229.
    • R. Hemmecke, S. Onn, and R. Weismantel. N-fold integer programming and nonlinear multi-transshipment. Optimization Letters 5 (2011), 13-25.
    • Survey: J. A. De Loera, R. Hemmecke, and M. Köppe. Foundations of Discrete Optimization: In transition from linear to non-linear models and methods. DMV Jahresbericht Band 114 (2012), Heft 4, 189--207.
    • R. Hemmecke, S. Onn, and L. Romanchuk. N-fold integer programming in cubic time. Mathematical Programming 137 (2013), 325--341. Winner of the 2011 Abraham Mechrez Prize for Best Student Paper (awarded to L. Romanchuk by the OR Society of Israel)
    • R. Hemmecke, M. Köppe, and R. Weismantel. Graver basis and proximity techniques for block-structured separable convex integer minimization problems. To appear in Mathematical Programming.
  • (Algorithmic) Discrete Mathematics
    • W. Bruns, R. Hemmecke, B. Ichim, M. Köppe, and Ch. Söger. Challenging computations of Hilbert bases of cones associated with algebraic statistics. Experimental Mathematics 20 (2011), 25-33. Most read article in Experimental Mathematics 
    • T. Bogart, R. Hemmecke, S. Petrović. Equality of Graver bases and universal Gröbner bases of colored partition identities. Experimental Mathematics 21 (2012), 395-401.
    • R. Hemmecke, S. Kosub, E. W. Mayr, Hanjo Täubig, and J. Weihmann. Inequalities for the Number of Walks in Graphs. Algorithmica 66 (2013), Springer, 804-828.
  • Optimization in Machine Learning
    • R. Bouckaert, R. Hemmecke, S. Lindner, and M. Studený. Efficient algorithms for conditional independence inference. Journal of Machine Learning Research 11 (2010), 3453-3479.
    • M. Studený, R. Hemmecke, and S. Lindner. Characteristic imset: a simple algebraic representative of a Bayesian network structure. In Proceedings of PGM 2010 (P. Myllymäki, T. Roos, T. Jaakkola eds.), HIIT Publications 2010, available online here 
    • R. Hemmecke, M. Studený and J. Vomlel. A geometric view on learning Bayesian network structures. International Journal of Approximate Reasoning 51 (2010), 573-586. 2nd prize winning paper at the ``UTIA Best 2010 Paper competition'', UTIA Prag.
    • D. Haws, R. Hemmecke, S. Lindner, and M. Studený. Polyhedral approach to statistical learning graphical models. In: Proceedings of the Second CREST–SBM International Conference, "Harmony of Gröbner Bases and the Modern Industrial Society'', 2011.
  • Discrete and algebraic methods in Chemistry
    • U.-U. Haus and R. Hemmecke. Unraveling the initial phase of the permanganate/oxalic acid reaction. Journal of Mathematical Chemistry 48 (2010), 305-312.
    • U.-U. Haus, R. Hemmecke, and S. Pokutta. Computing biochemical cluster networks. Journal of Mathematical Chemistry 49 (2011), 2441-2456.

Research Unit M9


Department of Mathematics
Boltzmannstraße 3
85748 Garching b. München
Germany
phone:+49 89 289-16858
fax:+49 089 289-16859
sekretariat-m9ma.tum.de

Professors

Prof. Dr. Peter Gritzmann
Applied Geometry and Discrete Mathematics

Prof. Dr. Andreas S. Schulz
Mathematics of Operations Research
(affiliated member of M9)

Prof. Dr. Stefan Weltge
Discrete Mathematics

News

April 2018
Case Studies 2018: Save the date: Case Studies poster presentation on May 25th, 2018, final workshop on July 7th, 2018.