Lectures: Mondays, 12:15-13:45

Exercise sessions: Tuesdays (bi-weekly) 16:00-18:00
(given by Marcus Kaiser)

Book: The Design of Approximation Algorithms
by D. Williamson and D. Shmoys

More info on the website.
Introduction to Approximation Algorithms
Algorithmic wishlist

1. **fast** (run in polynomial time)
2. **universal** (work for any instance)
3. **optimal** (find best solution)
Algorithmic wishlist

1. fast (run in polynomial time)
2. universal (work for any instance)
3. optimal (find best solution)

Choose two.
(unless P = NP)
Algorithmic wishlist

1. fast (run in polynomial time)
2. universal (work for any instance)
3. approximately optimal (find provably good solution)

⇓

Approximation Algorithms
Definition An α-approximation algorithm for an optimization problem is an algorithm that

- runs in polynomial time and
- computes for any instance of the problem a solution,
- whose value is within a factor of α of the optimal solution.
Definition An α-approximation algorithm for an optimization problem is an algorithm that

- runs in polynomial time and
- computes for any instance of the problem a solution,
- whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm

OPT: value of optimal solution

for maximization problems: $\text{ALG} \geq \alpha \cdot \text{OPT}$

for minimization problems: $\text{ALG} \leq \alpha \cdot \text{OPT}$

($\alpha \leq 1$)

($\alpha \geq 1$)
Definition An α-approximation algorithm for an optimization problem is an algorithm that

- runs in polynomial time and
- computes for any instance of the problem a solution,
- whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm
OPT: value of optimal solution

for maximization problems: $\text{ALG} \geq \alpha \cdot \text{OPT}$
($\alpha \leq 1$)

for minimization problems: $\text{ALG} \leq \alpha \cdot \text{OPT}$
($\alpha \geq 1$)

We call α approximation factor or performance guarantee.
Example: Set Cover
The **Set Cover** problem

Input: elements E, sets $S \subseteq 2^E$, weights $w : S \to \mathbb{R}_+$

Task: find $S' \subseteq S$ with $\bigcup_{S \in S'} S = E$
minimizing $\sum_{S \in S'} w(S)$
The **Set Cover** problem

Input: elements E, sets $S \subseteq 2^E$, weights $w : S \rightarrow \mathbb{R}_+$

Task: find $S' \subseteq S$ with $\bigcup_{S \in S'} S = E$
minimizing $\sum_{S \in S'} w(S)$

Special case: **Vertex Cover**
The **Set Cover** problem

Input: elements E, sets $S \subseteq 2^E$, weights $w : S \rightarrow \mathbb{R}_+$

Task: find $S' \subseteq S$ with $\bigcup_{S \in S'} S = E$
minimizing $\sum_{S \in S'} w(S)$

Special case: **Vertex Cover**
How to design an approximation algorithm?
How to design an approximation algorithm?

We don’t know OPT, but we can get lower bounds.
\[
\begin{align*}
\text{min} & \quad \sum_{S \in S} w(S)x(S) \\
\text{s.t.} & \quad \sum_{S : e \in S} x(S) \geq 1 \quad \forall e \in E \\
& \quad x(S) \in \{0, 1\} \quad \forall S \in S
\end{align*}
\]
LP relaxation

\[
\begin{align*}
\min & \quad \sum_{S \in S} w(S)x(S) \\
\text{s.t.} & \quad \sum_{S : e \in S} x(S) \geq 1 \quad \forall e \in E \\
& \quad x(S) \geq 0 \quad \forall S \in S
\end{align*}
\]
LP relaxation

\[
\begin{align*}
\min & \quad \sum_{S \in \mathcal{S}} w(S)x(S) \\
\text{s.t.} & \quad \sum_{S : e \in S} x(S) \geq 1 \quad \forall \ e \in \mathcal{E} \\
& \quad x(S) \geq 0 \quad \forall \ S \in \mathcal{S}
\end{align*}
\]
LP relaxation

\[Z^* := \min \sum_{S \in \mathcal{S}} w(S) x(S) \]

s.t. \[\sum_{S : e \in S} x(S) \geq 1 \quad \forall e \in \mathcal{E} \]

\[x(S) \geq 0 \quad \forall S \in \mathcal{S} \]

LP value is lower bound:

\[Z^* \leq \text{OPT} \]
(Deterministic) LP Rounding
LP rounding

Idea: Select S if $x(S) \geq \frac{1}{f}$.

$$f := \max_{e \in E} |\{S : e \in S\}|$$
Idea: Select S if $x(S) \geq \frac{1}{f}$.

$$f := \max_{e \in E} |\{S : e \in S\}|$$

Theorem

LP rounding is an f-approximation algorithm for **Set Cover**.
LP rounding

Idea: Select S if $x(S) \geq \frac{1}{f}$.

\[f := \max_{e \in E} |\{S : e \in S\}| \]

Theorem

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

\[S' := \left\{ S : x(S) \geq \frac{1}{f} \right\} \]
LP rounding

Idea: Select S if $x(S) \geq \frac{1}{f}$.

$f := \max_{e \in E} |\{S : e \in S\}|$

Theorem

LP rounding is an f-approximation algorithm for \textsc{Set Cover}.

Proof.

$S' := \left\{ S : x(S) \geq \frac{1}{f} \right\}$

- Is every element covered?
LP rounding

Idea: Select S if $x(S) \geq \frac{1}{f}$.

$$f := \max_{e \in E} |\{ S : e \in S \}|$$

Theorem

LP rounding is an f-approximation algorithm for **Set Cover**.

Proof.

$$S' := \left\{ S : x(S) \geq \frac{1}{f} \right\}$$

- Is every element covered?

$$\sum_{S \in S : e \in S} x(S) \geq 1 \quad \Rightarrow \quad \exists S \in S : x(S) \geq \frac{1}{f}$$
LP rounding

Idea: Select S if $x(S) \geq \frac{1}{f}$.

$$f := \max_{e \in E} |\{S : e \in S\}|$$

Theorem

LP rounding is an f-approximation algorithm for **Set Cover**.

Proof.

$$S' := \left\{ S : x(S) \geq \frac{1}{f} \right\}$$

- Is every element covered?

$$\sum_{S \in S : e \in S} x(S) \geq 1 \implies \exists S \in S : x(S) \geq \frac{1}{f}$$

- Is the approximation factor fulfilled?
LP rounding

Idea: Select S if $x(S) \geq \frac{1}{f}$.

\[f := \max_{e \in E} |\{S : e \in S\}| \]

Theorem

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

\[S' := \left\{ S : x(S) \geq \frac{1}{f} \right\} \]

- Is every element covered?

\[\sum_{S \in S : e \in S} x(S) \geq 1 \quad \Rightarrow \quad \exists S \in S : x(S) \geq \frac{1}{f} \]

- Is the approximation factor fulfilled?

\[\sum_{S \in S'} w(S) \leq \sum_{S \in S'} w(S) \cdot f \cdot x(S) \]
Idea: Select S if $x(S) \geq \frac{1}{f}$.

$$f := \max_{e \in E} \left| \{S : e \in S\} \right|$$

Theorem

LP rounding is an f-approximation algorithm for Set Cover.

Proof.

$$S' := \left\{ S : x(S) \geq \frac{1}{f} \right\}$$

- Is every element covered?

$$\sum_{S \in S : e \in S} x(S) \geq 1 \quad \Rightarrow \quad \exists S \in S : x(S) \geq \frac{1}{f}$$

- Is the approximation factor fulfilled?

$$\sum_{S \in S'} w(S) \leq \sum_{S \in S'} w(S) \cdot f \cdot x(S) \leq f \cdot \sum_{S \in S} w(S) x(S) = f \cdot Z^*$$
Consequences

A priori vs. a fortiori

- The LP rounding analysis gives us an a priori guarantee: $\text{ALG} \leq f \cdot \text{OPT}$ for any instance of Set Cover.

- For a concrete run of the algorithm, we get an a fortiori guarantee: If $\text{ALG} \big/ Z^* \leq \alpha$, we know that $\text{ALG} \leq \alpha \cdot \text{OPT}$.
A priori vs. a fortiori

- The LP rounding analysis gives us an a priori guarantee: \(\text{ALG} \leq f \cdot \text{OPT} \) for any instance of Set Cover.
- For a concrete run of the algorithm, we get an a fortiori guarantee: If \(\text{ALG}/Z^* \leq \alpha \), we know that \(\text{ALG} \leq \alpha \cdot \text{OPT} \).

Integrality gap

The integrality gap of an LP is the ratio \(\frac{Z^*}{\text{OPT}} \).

The LP rounding algorithm implies that the integrality gap of the Set Cover LP is bounded by \(f \).
The Primal-Dual Method
Primal-dual method

\[
\begin{align*}
\text{max} & \quad \sum_{e \in E} y(e) \\
\text{s.t.} & \quad \sum_{e \in S} y(e) \leq w(S) \quad \forall S \in S \\
\quad & \quad y(e) \geq 0 \quad \forall e \in E
\end{align*}
\]

Algorithm:

1. Initialize \(y(e) = 0 \) for all \(e \in E \).
2. While \(\exists \) uncovered element \(e' \):
 - Increase \(y(e') \) until a set \(S \) with \(e' \in S \) becomes tight.
3. Add \(S \) to \(S' \). \(\sum_{e \in S} y(e) = w(S) \)
4. Return \(S' \).

Theorem: Primal-dual is an \(f \)-approximation algorithm for Set Cover.
Primal-dual method

\[
\begin{align*}
\max & \quad \sum_{e \in E} y(e) \\
\text{s.t.} & \quad \sum_{e \in S} y(e) \leq w(S) \quad \forall S \in S \\
& \quad y(e) \geq 0 \quad \forall e \in E
\end{align*}
\]

Algorithm:

1. Initialize \(y(e) = 0 \) for all \(e \in E \).
2. while (\(\exists \) uncovered element \(e' \))

 Increase \(y(e) \) until a set \(S \) with \(e \in S \) becomes tight.

 Add \(S \) to \(S' \).

3. Return \(S' \).

Theorem

Primal-dual is an \(f \)-approximation algorithm for Set Cover.
Primal-dual method

\[
\begin{align*}
\text{max} & \quad \sum_{e \in E} y(e) \\
\text{s.t.} & \quad \sum_{e \in S} y(e) \leq w(S) \quad \forall S \in \mathcal{S} \\
& \quad y(e) \geq 0 \quad \forall e \in E
\end{align*}
\]

Algorithm:

1. Initialize \(y(e) = 0 \) for all \(e \in E \).
2. while (\(\exists \) uncovered element \(e' \))
 Increase \(y(e) \) until a set \(S \) with \(e \in S \) becomes tight.
 Add \(S \) to \(S' \).
 \((\sum_{e \in S} y(e) = w(S)) \)
3. Return \(S' \).

Theorem

Primal-dual is an \(f \)-approximation algorithm for Set Cover.
Greedy algorithm
Greedy algorithm

Algorithm:

1. while (∃ uncovered element)
 - Choose S' minimizing $\frac{w(S')}{|S' \setminus \bigcup_{S \in S'} S|}$
 - Add S' to S'.
2. Return S'.

Theorem
The Greedy Algorithm is an H_n-approximation for Set Cover.

Lemma
For every iteration i:
$$w(S_i) \leq n_i - n_i + 1$$
$$n_i$$OPT.
Greedy algorithm

Algorithm:

1. while (exists uncovered element)

 Choose S' minimizing $\frac{w(S')}{|S' \setminus \bigcup_{s \in S'} S|}$

 Add S' to S'.

2. Return S'.

$$n := |E|, \quad H_n := \sum_{i=1}^{n} \frac{1}{i}$$

Theorem

The Greedy Algorithm is an H_n-approximation for Set Cover.
Greedy algorithm

Algorithm:

1. while (∃ uncovered element)

 Choose S' minimizing $\frac{w(S')}{|S'\setminus \bigcup_{S \in S'} S|}$

 Add S' to S'.

2. Return S'.

$n := |E|, \ H_n := \sum_{i=1}^{n} \frac{1}{i}$

Theorem

The Greedy Algorithm is an H_n-approximation for Set Cover.

S_i: set selected in iteration i

n_i: uncovered elements at start of iteration i
Greedy algorithm

Algorithm:

1. while (exists uncovered element)

 Choose S' minimizing $\frac{w(S')}{|S' \setminus \bigcup_{S \in S'} S|}$

 Add S' to S'.

2. Return S'.

$n := |E|, \quad H_n := \sum_{i=1}^{n} \frac{1}{i}$

Theorem

The Greedy Algorithm is an H_n-approximation for Set Cover.

S_i: set selected in iteration i

n_i: uncovered elements at start of iteration i

Lemma

For every iteration i: $w(S_i) \leq \frac{n_i - n_{i+1}}{n_i} \cdot \text{OPT}$.
Greedy algorithm

Algorithm:

1. while (∃ uncovered element)
 Choose S' minimizing $\frac{w(S')}{|S'\setminus \bigcup_{S \in S'} S|}$
 Add S' to S'.
2. Return S'.

Theorem

$\sum_{S \in S'} w(S) \leq H_g \cdot Z^*$, where $g := \max_{S \in S} |S|$.