Dynamic Programming

Example I: The Knapsack Problem
The Knapsack Problem

Input: set of n items I, values v_i, sizes s_i, capacity B (all integers)

Task: find $S \subseteq I$ with $\sum_{i \in S} s_i \leq B$, maximizing value $\sum_{i \in S} v_i$
A dynamic program

Idea: store all “good” subsets of \{1, \ldots, j\} in \(A(j)\)
A dynamic program

Idea: store all “good” subsets of \{1, \ldots, j\} in \(A(j)\)

Dominance: \(X \succeq Y \iff s(X) \leq s(Y)\) and \(v(X) \geq v(Y)\)

We don’t need \(Y\) if we have \(X\) ...
Idea: store all “good” subsets of \{1, \ldots, j\} in \(A(j)\)

Dominance: \(X \succeq Y \iff s(X) \leq s(Y) \text{ and } v(X) \geq v(Y)\)

We don’t need \(Y\) if we have \(X\) ...

Algorithm 1 (DP for Knapsack)

1. \(A(0) := \{\emptyset\}\)
2. for \(j := 1\) to \(n\)
 \(A(j) := A(j - 1)\)
 for each \(X \in A(j)\)
 if \(s(X) + s_j \leq B\) then
 add \(X \cup \{j\}\) to \(A(j)\)
 while (\(\exists X, Y \in A(j)\) with \(X \succeq Y\))
 remove \(Y\) from \(A(j)\)
3. return \(X \in A(n)\) maximizing \(v(X)\)
An approximation scheme

Idea: make V smaller by scaling all v_i down (and rounding)
Idea: make V smaller by scaling all v_i down (and rounding)

Let’s try to get a $(1 - \varepsilon)$-approximation for some $\varepsilon > 0$.

Algorithm 2 (FPTAS for Knapsack)

1. $M := \max_i v_i$
2. $\mu := \varepsilon M$
3. $v'_i := \left\lfloor \frac{v_i}{\mu} \right\rfloor$ for all $i \in [n]$
4. Solve instance with v'_i instead of v_i, using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS): $(1 - \varepsilon)$-approximation for every $\varepsilon > 0$

Fully Polynomial-time Approximation Scheme (FPTAS): $(1 - \varepsilon)$-approximation for every $\varepsilon > 0$, running time polynomial in encoding and $1/\varepsilon$.
An approximation scheme

Idea: make V smaller by scaling all v_i down (and rounding)

Let’s try to get a $(1 - \varepsilon)$-approximation for some $\varepsilon > 0$.

Algorithm 2 (FPTAS for Knapsack)

1. $M := \max_i v_i, \quad \mu := \frac{\varepsilon M}{n}$
2. $v'_i := \lfloor v_i / \mu \rfloor$ for all $i \in [n]$
3. Solve instance with v' instead of v, using Algorithm 1.
An approximation scheme

Idea: make V smaller by scaling all v_i down (and rounding)

Let’s try to get a $(1 - \varepsilon)$-approximation for some $\varepsilon > 0$.

Algorithm 2 (FPTAS for Knapsack)

1. $M := \max_i v_i$, $\mu := \frac{\varepsilon M}{n}$
2. $v'_i := \lfloor v_i / \mu \rfloor$ for all $i \in [n]$
3. Solve instance with v' instead of v, using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS):
$(1 - \varepsilon)$-approximation for every $\varepsilon > 0$

Fully Polynomial-time Approximation Scheme (FPTAS):
$(1 - \varepsilon)$-approximation for every $\varepsilon > 0$, running time polynomial in encoding and $1/\varepsilon$
Dynamic Programming
Example II: Scheduling on Identical Parallel Machines
Input: \(m \) identical machines,
\(n \) jobs with processing times \(p_1, \ldots, p_n \)

Task: assign each job \(j \in [n] \) to a machine \(\sigma(j) \in [m] \)
minimizing \(C_{\text{max}} := \max_{i \in [m]} \sum_{j : \sigma(j)=i} p_j \)
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.

2. For $j := 1$ to n

 Assign j to machine i with lowest load.

Theorem

LPT List Scheduling is a $4/3$-approximation for $P||C_{\text{max}}$.
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n

 Assign j to machine i with lowest load.

Theorem

LPT List Scheduling is a $4/3$-approximation for $P\|C_{\text{max}}$.

Last week ...
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n

 Assign j to machine i with lowest load.

Theorem

LPT List Scheduling is a $4/3$-approximation for $P\|C_{\text{max}}$.
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n
 - Assign j to machine i with lowest load.

Theorem
LPT List Scheduling is a $4/3$-approximation for $P||C_{max}$.
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n
 Assign j to machine i with lowest load.

Theorem
LPT List Scheduling is a $4/3$-approximation for $P\|C_{\text{max}}$.
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n

 Assign j to machine i with lowest load.

Theorem

LPT List Scheduling is a $4/3$-approximation for $P||C_{\text{max}}$.
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n

 Assign j to machine i with lowest load.

Theorem

LPT List Scheduling is a $4/3$-approximation for $P||C_{\text{max}}$.
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n
 Assign j to machine i with lowest load.

Theorem

LPT List Scheduling is a 4/3-approximation for $P\|C_{\text{max}}$.
Algorithm (Longest Processing Time first)

1. Order jobs such that $p_1 \geq p_2 \geq \cdots \geq p_n$.
2. For $j := 1$ to n
 Assign j to machine i with lowest load.

Theorem

LPT List Scheduling is a $4/3$-approximation for $P\|C_{\max}$.
Algorithm $A(k)$

1. Compute optimal schedule for long jobs.
2. For each short job j

 Assign j to machine i with lowest load.

\[j' \text{ long: } p_{j'} \geq \frac{1}{km} \sum_{j \in [n]} p_j \]
An approximation scheme

Algorithm $A(k)$

1. Compute optimal schedule for long jobs.
2. For each short job j
 Assign j to machine i with lowest load.

$$j' \text{ long: } p_{j'} \geq \frac{1}{km} \sum_{j \in [n]} p_j$$
Algorithm \(A(k) \)

1. Compute optimal schedule for long jobs.
2. For each short job \(j \)

 Assign \(j \) to machine \(i \) with lowest load.

\[j' \text{ long: } p_{j'} \geq \frac{1}{km} \sum_{j \in [n]} p_j \]
An approximation scheme

Algorithm $A(k)$

1. Compute optimal schedule for long jobs.
2. For each short job j

 Assign j to machine i with lowest load.

Theorem $A(k)$ is a $(1 + 1/km)$-approximation with running time $O(m + km + n)$.

Equation

$$j' \text{ long: } p_j' \geq \frac{1}{km} \sum_{j \in [n]} p_j$$
Algorithm $A(k)$

1. Compute optimal schedule for long jobs.
2. For each short job j
 Assign j to machine i with lowest load.

j' long: $p_{j'} \geq \frac{1}{km} \sum_{j \in [n]} p_j$
Algorithm $A(k)$

1. Compute optimal schedule for long jobs.
2. For each short job j
 - Assign j to machine i with lowest load.

\[j' \text{ long: } p_{j'} \geq \frac{1}{km} \sum_{j \in [n]} p_j \]

Theorem

$A(k)$ is a $(1 + 1/k)$-approximation with running time $O(m^{km} + n)$.
Algorithm $A'(k, T)$

1. Schedule long jobs within $(1 + 1/k)T$
 (or find out that $T < \text{OPT}$ and stop).

2. For each short job j
 Assign j to machine i with lowest load.

j long: $p_j \geq \frac{T}{k}$
An approximation scheme

Algorithm $A'(k, T)$

1. Schedule long jobs within $(1 + 1/k)T$ (or find out that $T < \text{OPT}$ and stop).
2. For each short job j
 - Assign j to machine i with lowest load.

j long: $p_j \geq \frac{T}{k}$

Theorem 1

If $A'(k, T)$ computes a schedule, then it has makespan $(1 + 1/k)T$.
Algorithm $A'(k, T)$

1. Schedule long jobs within $(1 + 1/k)T$ (or find out that $T < \text{OPT}$ and stop).

2. For each short job j
 Assign j to machine i with lowest load.

Theorem 1
If $A'(k, T)$ computes a schedule, then it has makespan $(1 + 1/k)T$.
Subroutine for long jobs

Algorithm $B(k, T)$

- **1** $p'_j := \left\lfloor \frac{k^2 p_j}{T} \right\rfloor \cdot \frac{T}{k^2}$ for each j
- **2** Compute $m' := \min$ number of machines needed to schedule rounded long jobs within makespan T.
- **3** If $m' \leq m$ then return corresponding schedule.
- **4** Otherwise return “failed”.

Lemma 1

If $B(k, T)$ computes a schedule, then it has makespan $(1 + 1/k)T$. If $B(k, T)$ returns “failed”, then $\text{OPT} > T$.

only long jobs: $p_j \geq \frac{T}{k}$
Subroutine for long jobs

Algorithm $B(k, T)$

1. $p'_j := \left\lfloor \frac{k^2 p_j}{T} \right\rfloor \cdot \frac{T}{k^2}$ for each j
2. Compute $m' := \min$ number of machines needed to schedule rounded long jobs within makespan T.
 \[\rightarrow \text{DP} \]
3. If $m' \leq m$ then return corresponding schedule.
4. Otherwise return “failed”.

Lemma 1

If $B(k, T)$ computes a schedule, then it has makespan $(1 + 1/k)T$. If $B(k, T)$ returns “failed”, then $\text{OPT} \geq T$.

Lemma 2

$B(k, T)$ runs in time $O(n^{k^2}(k + 1)^{k^2})$.
Idea:

- only k^2 different job types ($p_j' \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\}$)
Idea:

- only k^2 different job types ($p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\}$)
- n_i: number of jobs of type i
Dynamic program: Idea

Idea:

- only k^2 different job types ($p_j' \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\}$)
- n_i: number of jobs of type i
- $M(n_1, \ldots, n_{k^2}) := \#$machines needed to schedule instance defined by n_1, \ldots, n_{k^2}
Dynamic program: Idea

Idea:

- only k^2 different job types ($p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\}$)
- n_i: number of jobs of type i
- $M(n_1, \ldots, n_{k^2}) := \#$machines needed to schedule instance defined by n_1, \ldots, n_{k^2}

$\#\text{instances} \leq n^{k^2}$
Dynamic program: Idea

Idea:

- only k^2 different job types ($p_j' \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\}$)
- n_i: number of jobs of type i
- $M(n_1, \ldots, n_{k^2}) := \#\text{machines needed to schedule instance defined by } n_1, \ldots, n_{k^2}$
- $M(n_1, \ldots, n_{k^2}) = 1 + \min_{s \in C} M(n_1 - s_1, \ldots, n_{k^2} - s_{k^2})$
- $C := \text{configurations (schedule } s_i \text{ jobs of type } i \text{ on the machine)}$

$$\#\text{instances} \leq n^{k^2}$$
Dynamic program: Idea

Idea:

- only \(k^2 \) different job types \((p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\}) \)
- \(n_i \): number of jobs of type \(i \)
- \(M(n_1, \ldots, n_{k^2}) := \# \text{machines needed to schedule instance defined by } n_1, \ldots, n_{k^2} \)
- \(M(n_1, \ldots, n_{k^2}) = 1 + \min_{s \in C} M(n_1 - s_1, \ldots, n_{k^2} - s_{k^2}) \)
- \(C := \text{configurations (schedule } s_i \text{ jobs of type } i \text{ on the machine)} \)

\[\#\text{instances} \leq n^{k^2} \quad \text{and} \quad |C| \leq (k + 1)^{k^2} \]
Idea:

- only k^2 different job types ($p_j' \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\}$)
- n_i: number of jobs of type i
- $M(n_1, \ldots, n_{k^2}) := \#$ machines needed to schedule instance defined by n_1, \ldots, n_{k^2}
- $M(n_1, \ldots, n_{k^2}) = 1 + \min_{s \in C} M(n_1 - s_1, \ldots, n_{k^2} - s_{k^2})$
- $C := \text{configurations (schedule } s_i \text{ jobs of type } i \text{ on the machine)}$

$$\#\text{instances} \leq n^{k^2} \quad \text{and} \quad |C| \leq (k + 1)^{k^2}$$

dynamic program: $n^{k^2}(k + 1)^{k^2}$
Algorithm DP

1. $M(0, \ldots, 0) := 0$, $Q := \{(0, \ldots, 0)\}$
2. while ($Q \neq \emptyset$)

 Let $q \in Q$ such that $M(q)$ is minimum.

 for each $s \in \mathcal{C}$ with $q_i + s_i \leq n$ for all i

 if $M(q) + 1 < M(q + s)$ then

 $M(q + s) := M(q) + 1$

 $Q := Q \cup \{q + s\}$

 end if

 end for

 $Q := Q \setminus \{q\}$
An approximation scheme

Algorithm $A'(k, T)$

1. Schedule long jobs within $(1 + 1/k)T$ (or find out that $T < \text{OPT}$ and stop).
2. For each short job j
 Assign j to machine i with lowest load.

j long: $p_j \geq \frac{T}{k} \rightarrow B(k, T)$

Theorem
If $A'(k, T)$ computes a schedule, then it has makespan $(1 + 1/k)T$. $A'(k, T)$ runs in time $O(n^{k^2}(k + 1)^{k^2})$.
An approximation scheme

Algorithm $A'(k, T)$

1. Schedule long jobs within $(1 + 1/k)T$
 (or find out that $T < \text{OPT}$ and stop).
2. For each short job j
 Assign j to machine i with lowest load.

Theorem

If $A'(k, T)$ computes a schedule, then it has makespan $(1 + 1/k)T$. $A'(k, T)$ runs in time $O(n^{k^2} (k + 1)^{k^2})$.

$A'(k, T)$ is a $(1 + 1/k)$-relaxed decision procedure.

Can be turned into a $(1 + 1/k)$-approximation algorithm. (Exercise)

PTAS: choose $k := \lceil 1/\varepsilon \rceil$