Approximation of Metrics by Trees
Tree metric approximation

Given a metric d on V, there is a randomized polynomial time algorithm that computes a random tree metric $d_{T,\ell}$ on V such that

$$d(u, v) \leq d_{T,\ell}(u, v) \text{ and } \mathbb{E}[d_{T,\ell}(u, v)] \leq O(\log |V|)d(u, v)$$

for all $u, v \in V$.
Tree metric approximation for
Buy-at-bulk
Network Design
Buy-at-bulk Network Design

Input: graph $G = (V, E)$, lengths $\ell : E \rightarrow \mathbb{R}_+$, terminal pairs s_i, t_i and demands Δ_i for $i \in [k]$, non-decreasing cost function $f : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ with $f(0) = 0$ and $f(x + y) \leq f(x) + f(y)$

Task: find paths P_i for $i \in [k]$ minimizing $\sum_{e \in E} \ell_e f(\Delta_e)$ with $\Delta_e := \sum_{i \in [k]: e \in P_i} \Delta_i$
Buy-at-bulk Network Design

Input: graph $G = (V, E)$, lengths $\ell : E \rightarrow \mathbb{R}_+$, terminal pairs s_i, t_i and demands Δ_i for $i \in [k]$, non-decreasing cost function $f : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ with $f(0) = 0$ and $f(x + y) \leq f(x) + f(y)$

Task: find paths P_i for $i \in [k]$ minimizing $\sum_{e \in E} \ell_e f(\Delta_e)$ with $\Delta_e := \sum_{i \in [k]: e \in P_i} \Delta_i$
Algorithm

1. Approximate the metric $d_{G,\ell}$ by a tree metric $d_{T,\ell'}$.

2. For every $i \in [k]$:
 - Let $T_i = (v_0, \ldots, v_n)$ be the unique s_i-t_i-path in T.
 - For $u, v \in V$ let P_{uv} be a shortest u-v-path in G.
 - Let P_i be a simple path in the concatenation $P_{v_0v_1} \circ \ldots \circ P_{v_{n-1}v_n}$.

3. Return $(P_i)_{i \in [k]}$.
Algorithm

1. Approximate the metric $d_{G, \ell}$ by a tree metric $d_{T, \ell'}$.
2. For every $i \in [k]$:
 - Let $T_i = (v_0, \ldots, v_n)$ be the unique s_i-t_i-path in T.
 - For $u, v \in V$ let P_{uv} be a shortest $u-v$-path in G.
 - Let P_i be a simple path in the concatenation $P_{v_0 v_1} \circ \ldots \circ P_{v_{n-1} v_n}$.
3. Return $(P_i)_{i \in [k]}$.
Theorem

The algorithm is a randomized $O(\log |V|)$-approximation algorithm for Buy-at-bulk Network Design.

Proof:

\[
\mathbb{E}[\text{ALG}] \leq \mathbb{E} \left[\sum_{e \in T} \ell'_e f(\Delta'_e) \right] \leftarrow \text{cost of ALG in } T
\]
\[
\leq \mathbb{E} \left[\sum_{e \in T} \ell'_e f(\bar{\Delta}_e) \right] \leftarrow \text{cost of OPT in } T
\]
\[
\leq O(\log |V|) \text{ OPT} \quad \square
\]
Today you learnt ...

Life is less complicated on a tree (metric).
Combining two Approximation Algorithms: Location Routing
Location + Routing = Location Routing

facility location

vehicle routing
Location + Routing = Location Routing

facility location

vehicle routing

location routing
Input: facilities F, clients C, metric d on $F \cup C$, opening costs $f \in \mathbb{R}_+^F$, demands $\Delta \in \mathbb{R}_+^C$, vehicle capacity U

Task: find a set of facilities $F' \subseteq F$ and a collection of tours \mathcal{T} such that

 ▶ every tour contains a facility from F',
 ▶ every client contained in a tour,
 ▶ total demand in each tour is at most U

minimizing $\sum_{w \in F'} f_w + \sum_{T \in \mathcal{T}} d(T)$
Input: facilities F, clients C, metric d on $F \cup C$, opening costs $f \in \mathbb{R}_+^F$, demands $\Delta \in \mathbb{R}_+^C$, vehicle capacity U

Task: find a set of facilities $F' \subseteq F$ and a collection of tours \mathcal{T} such that

- every tour contains a facility from F',
- every client contained in a tour,
- total demand in each tour is at most U

minimizing $\sum_{w \in F'} f_w + \sum_{T \in \mathcal{T}} d(T)$
Location Routing

Input: facilities F, clients C, metric d on $F \cup C$, opening costs $f \in \mathbb{R}_+^F$, demands $\Delta \in \mathbb{R}_+^C$, vehicle capacity U

Task: find a set of facilities $F' \subseteq F$ and a collection of tours \mathcal{T} such that

- every tour contains a facility from F',
- every client contained in a tour,
- total demand in each tour is at most U

minimizing $\sum_{w \in F'} f_w + \sum_{T \in \mathcal{T}} d(T)$
Bound 1: Minimum Spanning Tree

Construct graph G' with edge weights d':

- r

- vertices $F \cup C \cup \{r\}$
Construct graph G' with edge weights d':

- vertices $F \cup C \cup \{r\}$
- edge $\{v, w\}$ for each $v, w \in C$
 weight: $d(v, w)$
Construct graph G' with edge weights d':

- vertices $F \cup C \cup \{r\}$
- edge $\{v, w\}$ for each $v, w \in C$ weight: $d(v, w)$
- edge $\{v, w\}$ for each $v \in C, w \in F$ weight: $d(v, w) + f_w$

Lemma
Let S be a minimum spanning tree in G' w.r.t. d'. Then $d'(S) \leq \text{OPT}$.
Bound 1: Minimum Spanning Tree

Construct graph G' with edge weights d':

- vertices $F \cup C \cup \{r\}$
- edge $\{v, w\}$ for each $v, w \in C$
 weight: $d(v, w)$
- edge $\{v, w\}$ for each $v \in C, w \in F$
 weight: $d(v, w) + f_w$
- edge $\{r, w\}$ for each $w \in F$
 weight: 0

$$d(v, w) + f_w$$

$$d(v, w)$$
Bound 1: Minimum Spanning Tree

Construct graph G' with edge weights d':

- Vertices $F \cup C \cup \{r\}$
- Edge $\{v, w\}$ for each $v, w \in C$
 - Weight: $d(v, w)$
- Edge $\{v, w\}$ for each $v \in C, w \in F$
 - Weight: $d(v, w) + f_w$
- Edge $\{r, w\}$ for each $w \in F$
 - Weight: 0

Lemma

Let S be a minimum spanning tree in G' w.r.t. d'. Then $d'(S) \leq \text{OPT}$.
Bound 1: Minimum Spanning Tree

Construct graph G' with edge weights d':

- vertices $F \cup C \cup \{r\}$
- edge $\{v, w\}$ for each $v, w \in C$
 - weight: $d(v, w)$
- edge $\{v, w\}$ for each $v \in C, w \in F$
 - weight: $d(v, w) + f_w$
- edge $\{r, w\}$ for each $w \in F$
 - weight: 0

Lemma

Let S be a minimum spanning tree in G' w.r.t. d'. Then $d'(S) \leq \text{OPT}$.
Bound 1: Minimum Spanning Tree

Construct graph G' with edge weights d':

- vertices $F \cup C \cup \{r\}$
- edge $\{v, w\}$ for each $v, w \in C$
 weight: $d(v, w)$
- edge $\{v, w\}$ for each $v \in C, w \in F$
 weight: $d(v, w) + f_w$
- edge $\{r, w\}$ for each $w \in F$
 weight: 0

Lemma

Let S be a minimum spanning tree in G' w.r.t. d'. Then $d'(S) \leq \text{OPT}$.
Bound 1: Minimum Spanning Tree

Construct graph G' with edge weights d':

- vertices $F \cup C \cup \{r\}$
- edge $\{v, w\}$ for each $v, w \in C$
 - weight: $d(v, w)$
- edge $\{v, w\}$ for each $v \in C, w \in F$
 - weight: $d(v, w) + f_w$
- edge $\{r, w\}$ for each $w \in F$
 - weight: 0

Lemma

Let S be a minimum spanning tree in G' w.r.t. d'. Then $d'(S) \leq \text{OPT}$.
Bound 1: Minimum Spanning Tree

Construct graph G' with edge weights d':

- vertices $F \cup C \cup \{r\}$
- edge $\{v, w\}$ for each $v, w \in C$ weight: $d(v, w)$
- edge $\{v, w\}$ for each $v \in C, w \in F$ weight: $d(v, w) + f_w$
- edge $\{r, w\}$ for each $w \in F$ weight: 0

Lemma

Let S be a minimum spanning tree in G' w.r.t. d'. Then $d'(S) \leq OPT$.
Bound 2: Uncapacitated Facility Location

- construct UFL instance with clients C, facilities F, opening costs f, and connection costs $d''_{vw} = \frac{2\Delta^U_v}{U} d(v, w)$.
Bound 2: Uncapacitated Facility Location

- construct UFL instance with clients \(C \), facilities \(F \), opening costs \(f \), and connection costs

\[
d''_{vw} = \frac{2\Delta v}{U} d(v, w)
\]

Lemma

Let \(F'' \subseteq F \) be an optimal solution to the UFL instance. Then

\[
\sum_{w \in F''} f_w + \sum_{v \in C} d''(v, F) \leq \text{OPT}
\]
construct UFL instance with clients C, facilities F, opening costs f, and connection costs $d''_{vw} = \frac{2\Delta_v}{U} d(v, w)$

Lemma

Let $F'' \subseteq F$ be an optimal solution to the UFL instance. Then $\sum_{w \in F''} f_w + \sum_{v \in C} d''(v, F) \leq OPT$.

Proof: Let (F^*, T^*) be optimal LR solution. Consider $T \in T^*$:
construct UFL instance with clients C, facilities F, opening costs f, and connection costs $d''_{vw} = \frac{2\Delta_v}{U} d(v, w)$

Lemma

Let $F'' \subseteq F$ be an optimal solution to the UFL instance. Then $\sum_{w \in F''} f_w + \sum_{v \in C} d''(v, F) \leq OPT$.

Proof: Let (F^*, T^*) be optimal LR solution. Consider $T \in T^*$:
Bound 2: Uncapacitated Facility Location

- construct UFL instance with clients C, facilities F, opening costs f, and connection costs $d''_{vw} = \frac{2\Delta_v}{U} d(v, w)$

Lemma

Let $F'' \subseteq F$ be an optimal solution to the UFL instance. Then $\sum_{w \in F''} f_w + \sum_{v \in C} d''(v, F) \leq OPT$.

Proof: Let (F^*, T^*) be optimal LR solution. Consider $T \in T^*$:

$$d''_{vT} = \frac{2\Delta_v}{U} d(v, w_T) \leq \frac{\Delta_v}{U} d(T) \quad \forall v \in V(T)$$
Bound 2: Uncapacitated Facility Location

- construct UFL instance with clients \(C \), facilities \(F \), opening costs \(f \), and connection costs \(d''_{vw} = \frac{2\Delta_v}{U} d(v, w) \)

Lemma

Let \(F'' \subseteq F \) be an optimal solution to the UFL instance. Then \(\sum_{w \in F''} f_w + \sum_{v \in C} d''(v, F) \leq \text{OPT} \).

Proof: Let \((F^*, T^*)\) be optimal LR solution. Consider \(T \in T^* \):

\[
d''_{vw_T} = \frac{2\Delta_v}{U} d(v, w_T) \leq \frac{\Delta_v}{U} d(T) \quad \forall v \in V(T)
\]

\[
\sum_{v \in V(T)} d''_{vw_T} \leq \left(\sum_{v \in V(T)} \frac{\Delta_v}{U} \right) d(T) \leq 1
\]

\[
\leq \frac{\Delta_v}{U} d(T)
\]
Bound 2: Uncapacitated Facility Location

- construct UFL instance with clients C, facilities F, opening costs f, and connection costs $d''_{\nu w} = \frac{2\Delta_{\nu}}{U} d(\nu, w)$

Lemma

Let $F'' \subseteq F$ be an optimal solution to the UFL instance. Then $\sum_{w \in F''} f_w + \sum_{\nu \in C} d''(\nu, F') \leq OPT$.

Proof: Let (F^*, T^*) be optimal LR solution. Consider $T \in T^*$:

\[d''_{\nu w_T} = \frac{2\Delta_{\nu}}{U} d(\nu, w_T) \leq \frac{\Delta_{\nu}}{U} d(T) \quad \forall \nu \in V(T) \]

\[\sum_{\nu \in V(T)} d''_{\nu w_T} \leq \left(\sum_{\nu \in V(T)} \frac{\Delta_{\nu}}{U} \right) d(T) \leq 1 \]

\[\sum_{\nu \in C} d''(\nu, F^*) \leq \sum_{T \in T^*} \sum_{\nu \in V(T)} d''(\nu, w_T) \leq \sum_{T \in T^*} d(T) \quad \square \]
Main Algorithm

1. compute MST S

Subprocedure: relieve overloaded subtree

1. find node v with $\Delta(S_v) > U$ but $\Delta(S_w) \leq U$ for all children w of v

2. partition subtrees of v into groups with demand between $U/2$ and U (except for the one containing v)

3. for each group find nearest open facility
Algorithm

Main Algorithm
1. compute MST S
2. compute UFL approximation F''

$U = 3, \Delta \equiv 1$
Algorithm

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours

$U = 3$, $\Delta \equiv 1$
$U = 3$, $\Delta \equiv 1$

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
Algorithm

Main Algorithm
1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 ▶ relieve overloaded subtree using F''

$U = 3, \Delta \equiv 1$
Algorithm

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''

$U = 3, \Delta = 1$
Algorithm

Main Algorithm
1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

$U = 3, \Delta \equiv 1$
Algorithm

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

$U = 3$, $\Delta \equiv 1$
Algorithm

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

$U = 3, \Delta \equiv 1$

Subprocedure: relieve overloaded subtree
Algorithm

$U = 3, \Delta = 1$

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

Subprocedure: relieve overloaded subtree

1. find node v with $\Delta(S_v) > U$ but $\Delta(S_w) \leq U$ for all children w of v
Algorithm

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

Subprocedure: relieve overloaded subtree

1. find node v with $\Delta(S_v) > U$
 but $\Delta(S_w) \leq U$ for all children w of v
2. partition subtrees of v into groups with demand between $U/2$ and U (except for the one containing v)
Algorithm

Subprocedure: relieve overloaded subtree

1. find node v with $\Delta(S_v) > U$ but $\Delta(S_w) \leq U$ for all children w of v
2. partition subtrees of v into groups with demand between $U/2$ and U (except for the one containing v)
3. for each group find nearest open facility

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut
Algorithm

Main Algorithm
1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

Subprocedure: relieve overloaded subtree
1. find node v with $\Delta(S_v) > U$
 but $\Delta(S_w) \leq U$ for all children w of v
2. partition subtrees of v into groups with demand between $U/2$
 and U (except for the one containing v)
3. for each group find nearest open facility
Algorithm

Main Algorithm
1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

Subprocedure: relieve overloaded subtree
1. find node v with $\Delta(S_v) > U$
 but $\Delta(S_w) \leq U$ for all children w of v
2. partition subtrees of v into groups with demand between $U/2$
 and U (except for the one containing v)
3. for each group find nearest open facility

$U = 3$, $\Delta \equiv 1$
Algorithm

Main Algorithm

1. compute MST S
2. compute UFL approximation F''
3. turn trees into tours
 - relieve overloaded subtree using F''
 - double edges, shortcut

Subprocedure: relieve overloaded subtree

1. find node v with $\Delta(S_v) > U$
 but $\Delta(S_w) \leq U$ for all children w of v
2. partition subtrees of v into groups with demand between $U/2$
 and U (except for the one containing v)
3. for each group find nearest open facility
This semester you learnt ...

many different **techniques** for designing approximation algorithms

- get a feeling which one works in which situation
- adapt them to your optimization problems
- know how to get lower bounds
- be inventive